Что такое транспирация у растений, определение в биологии
Содержание:
Механизм транспирации
Процесс жизнедеятельности любого растения неразрывно связан с потреблением влагой. Из суточного объема полученной воды для фотосинтеза и физиологических потребностей растению необходимо только 10%. Оставшиеся 90% испаряются в атмосферу.
Зачем растению нужно испарять влагу? Транспирация позволяет растению получать из грунта питательные вещества и микроэлементы, растворенные в воде.
Механизм действия следующий:
Освобождаясь от лишней влаги, в водопроводящих тканях растений создается отрицательное давление.
Разряжение «подтягивает» влагу из соседних клеток ксилемы, и так, по цепочке, непосредственно до всасывающих клеток корневой системы.
Благодаря процессу испарения растения естественным образом регулируют свою температуру, защищая себя от перегрева. Доказано, что температура транспирирующего листа ниже не испаряющего влагу. Разница достигает 7°С.
У растений различают две разновидности влагообмена:
- посредством устьиц;
- через кутикулы.
Чтобы понять принцип действия данного явления необходимо вспомнить строение листа из школьного курса биологии.
Лист растения состоит из:
Клеток эпидермиса, которые образуют основной защитный слой.
Кутикула – восковой (внешний) защитный слой.
Мезофилл или «мякоть» – основная ткань, расположенная между внешними слоями эпидермиса.
Прожилки – «транспортные магистрали» листа, по которым перемещается влага насыщенная питательными веществами.
Устья – отверстия в эпидермисе, контролирующие газообмен растения.
При устьичной транспирации, процесс испарения происходит в две стадии:
Переход влаги из жидкой фазы в парообразную. Вода в жидком состоянии находится в клеточных оболочках. Пар формируется в межклеточном пространстве.
Выделение газообразной влаги в атмосферу через устья эпидермиса.
При устьичном влагообмене растение может регулировать уровень испарения. Далее рассмотрим механизм действия данного процесса.
Кутикулярная транспирация регулирует испарение влаги с поверхности листьев при закрытых устьях. Интенсивность испарения жидкости зависит от толщины кутикулы и возраста растения.
Регуляция
Растение регулирует свой уровень транспирации с помощью изменения размера устьичных щелей. На уровень транспирации также влияет состояние атмосферы вокруг листа, влажность, температура и солнечный свет, а также состояние почвы и её температура и влажность. Кроме того, надо учитывать и размер растения, от которого зависит количество воды, поглощаемой корнями и, в дальнейшем, испаряемой через листья.
Особенность | Влияние на транспирацию |
---|---|
Количество листьев | Чем больше листьев, тем больше поверхность испарения и больше количество устьиц для газообмена. Это увеличивает потери воды. |
Количество устьиц | Чем больше на листе устьиц, тем больше воды испаряет лист. |
Размер листа | Лист с большей площадью испаряет больше воды, чем лист с маленькой. |
Наличие растительной кутикулы | Воскоподобная плёнка кутикулы плохо проницаема для воды и водяных паров и снижает испарение с поверхности растения, за исключением испарения через устьица. Блестящая поверхность кутикулы отражает солнечные лучи, снижая температуру листа и уровень испарения. Небольшие волоски (трихомы) на поверхности листа также снижают потерю воды, создавая рядом с поверхностью зону высокой влажности. Такие приспособления для сохранения воды можно наблюдать у многих растений из засушливых мест — ксерофитов. |
Содержание CO2 | У многих растений понижение уровня углекислого газа в воздухе приводит к повышению тургора замыкающих клеток и открытию устьиц. |
Уровень света | Помимо понижения уровня углекислого газа в процессе фотосинтеза свет может оказывать и непосредственное влияние на замыкающие клетки, заставляя их разбухать. |
Температура | Увеличение температуры увеличивает скорость испарения и уменьшает относительную влажность окружающей среды, что также увеличивает потерю воды. |
Относительная влажность | Сухой воздух вокруг листьев повышает уровень транспирации. |
Ветер | В стоячем воздухе рядом с поверхностью испарения образуется область с высокой влажностью, что замедляет потерю воды. |
Во время сезона роста лист может испарить количество воды во много раз превышающее его собственный вес. Один гектар посева пшеницы испаряет за лето 2000—3000 тонн воды. В сельском хозяйстве оперируют понятием транспирационного коэффициента, это соотношение между затраченной массой воды и приростом сухой массы. Обычно он составляет от 200 до 600 (1000), т.е для образования одного килограмма сухой массы сельхозкультуры необходимо от 200 до 1000 литров воды.
Для измерения уровня транспирации растений существует множество техник и приборов, включая потометры, лизиметры, порометры, фотосинтетические системы и термометрические сенсоры. Для измерения эвапотранспирации применяют главным образом изотопные методы. Недавние исследования показывают, что вода, испарённая растениями, отличается по изотопному составу от грунтовых вод.
У пустынных растений есть специальные приспособления, позволяющие снизить транспирацию и сохранить воду, такие как толстая кутикула, уменьшенная площадь листьев и волоски на листьях. Многие из них используют так называемый CAM-фотосинтез, когда днём устьица закрыты, а открываются только ночью, когда температура ниже, а влажность больше.
Лист как орган транспирации
Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.
Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.
Механизм раскрытия устьиц заключается в следующем:
По окружности устий расположены замыкающие клетки.
При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.
Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.
Лист как орган транспирации
Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.
Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.
Механизм раскрытия устьиц заключается в следующем:
По окружности устий расположены замыкающие клетки.
При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.
Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.
Влияющие факторы
Транспирация в живой природе протекает под различными внешними воздействиями. На ее интенсивность и качество влияет множество факторов окружающей среды.
Среди них выделяются:
- суточные циклы;
- количество солнечных дней в году;
- объем и агрессивность рентгеновского и ультрафиолетового излучения;
- экологическая обстановка в ареале произрастания;
- влажность и температура воздуха;
- уровень загрязнения атмосферной смеси вредными выбросами промышленного производства;
- сила ветра;
- активность вредителей.
Солнечный свет способствует раскрытию щелевых отверстий устьичных образований. В культивируемых зонах, парниковых, тепличных и оранжерейных комплексах эту функцию выполняют искусственные светодиодные или галогенные источники электромагнитного излучения.
Солнечное изучение энергично впитывается хлорофиллом – зеленым пигментом, задействованным в химической реакции фотосинтеза. В результате такого процесса возрастает температура листьев и усиливается парообразование. Активизация транспирации охлаждает поверхность, что лежит в основе ее терморегулирующей функции. Даже рассеянное излучение низкой интенсивности усиливает парообразование примерно на 30-40% в сравнении с показателем процесса, проходящего в ночное время или при вечерних сумерках.
Научные данные гласят, что 100 см2 кукурузных листьев в полной темноте испаряют 0,097 г жидкости за 1 ч. При мягком рассеянном освещении это показатель возрастает до 0,114 г, а под воздействием прямого солнечного излучения – до 0,785 г/ч. Не менее важный фактор влияния на естественный ход транспирации – температура атмосферного воздуха. По мере его нагревания испарительный процесс ускоряется, поскольку молекулы воды разгоняются и усиливается диффузия пара с коллоидной поверхности клеточных мембран.
Транспирация у растений – это процесс, подверженный многофакторному как естественному, так и техногенному влиянию. Промышленные загрязнения воздуха повышают его плотность, а выбросы в атмосферу углекислых соединений создают парниковый эффект. Это приводит к резкому росту температуры и ускорению транспирации. Важный естественный фактор – сила ветра, которая играет неоднозначную роль в физиологических реакциях растительных организмов. В результате интенсивного движения атмосферных потоков тяжелые влажные слои заменяются легкими сухими.
Это оказывает существенное влияние на отвод испаренной воды из межклеточного пространства листьев. Порывы ветра провоцируют преждевременное замыкание устьичных щелей, что приводит к замедлению физиологической реакции.
викторина
1. Какой тип транспирации НЕ является?A. Лентикулярная транспирацияB. Мезархальная транспирацияC. Кутикулярная транспирацияD. Стоматальная транспирация
Ответ на вопрос № 1
В верно. Лентикулярная, кутикулярная и устная транспирация – это формы транспирации, при которых вода теряется через линзу, кутикулу и устьицу соответственно. Мезархальная транспирация не существует. Месарх описывает путь развития ксилемы.
2. Когда температура повышается, что происходит со скоростью транспирации?A. Транспирация увеличивается.B. Транспирация уменьшается.C. Транспирация остается с той же скоростью.
Ответ на вопрос № 2
верно. Когда температура увеличивается, транспирация также увеличивается. Растения больше открывают свои устьицы в горячих средах, так что вода может испаряться, что охлаждает растение. Поэтому растения в горячих средах обычно переносят больше, чем растения в более холодных средах.
3. Когда _____________ увеличивается, скорость транспирации уменьшается.A. ветерB. Влага в почвеC. Влага в воздухеD. температура
Ответ на вопрос № 3
С верно. Когда относительная влажность высокая, транспирация уменьшается. Меньше воды испаряется в окружающий воздух, если в воздухе больше влаги. Когда влажность низкая, а воздух сухой, транспирация увеличивается. Вода проникает в воздух через диффузию; он перемещается из области с более высокой концентрацией (лист) в область с более низкой концентрацией (воздух).
Внутреннее строение листа
Внутренняя структура листовой пластинки приспособлена для фотосинтеза, газообмена и испарения воды. Вся поверхность листа покрыта прозрачной эпидермой, большинство клеток которой не имеет хлоропластов. Эпидерма верхней стороны листовой пластины содержит восковой кутикулярный слой, препятствующий испарению воды и отражающий солнечные лучи, на нём могут присутствовать железистые волоски и трихомы. Трихомы удерживает влагу и препятствуют её испарению. Эпидерма выполняет несколько функций:
- защита от излишнего испарения;
- регуляция газообмена для дыхания и фотосинтеза;
- выделение воды и некоторых веществ;
- впитывания воды (у некоторых растений, не у всех).
Слой эпидермы на нижней стороне большинства листьев содержит щелевидные отверстия (устьица), с расположенными по бокам замыкающими клетками. При равном освещении обеих сторон листа, устьица образуются на обеих из них. У плавающих в воде листьев устьица есть только на верхней эпидерме. Устьица регулируют газообмен и испарение, они связаны с межклетниками основной ткани листа.
Эпидерма листа традесканции
Основная ткань между верхней и нижней эпидермой называется мезофиллом. Мезофилл – важнейшая ткань листа, в её клетках сосредоточены хлоропласты и происходит фотосинтез. Она перемежается жилками различных размеров. Клетки мезофилла покрыты тонкой оболочкой, они не имеют одревесневшей клеточной стенки.
Большинство листьев папоротников и цветковых растений имеет два различных типа мезофилла:
- верхний, столбчатый (палисадный) – состоящий из одного или нескольких (чаще двух) рядов плотноупакованных бочкообразных или цилиндрических вытянутых клеток хлоренхимы (паренхима с хлоропластами). Они расположены прямо под эпидермой вертикально по отношению к ней. Листья, растущие на солнце, содержат до 5 слоёв палисадного мезофилла, в теневых листьях есть только 1 слой. Некоторые растения, например виды Эвкалиптов из-за особого расположения их листьев по отношению к свету (боком) содержат столбовидную хлоренхиму ближе к краям листовой пластинки.
- губчатый – пространство между столбчатой хлоренхимой и нижним эпидермисом заполнено рыхлой паренхимой, между клетками которой имеется множество воздушных пространств. Эти воздушные полости взаимосвязаны с устьицами и участвуют в газообмене и выведении водяного пара из листа. Увеличение межклеточных пространств достигается различными путями: в одних случаях клетки сохраняют округлую форму, в других образуют выросты.
Расположение устьиц преимущественно на нижней стороне листа объясняется не только положением губчатого мезофилла. Потеря воды листом в процессе транспирации идёт медленнее через устьица, расположенной в нижней, а не в верхней эпидерме. Кроме того, главным источником углекислого газа в атмосфере является «почвенное дыхание» — выделение СО2 в результате жизнедеятельности многочисленных живых существ, населяющих почву.
Абсолютная толщина палисадной и губчатой ткани и число слоёв клеток в них различны, в зависимости от освещения и других причин. Даже у одной особи, например на одном кусте сирени, листья, выросшие на свету, имеют более развитый мезофилл, чем теневые листья.
Внутреннее строение листьев может меняться. Если нижняя сторона листьев получает достаточно света, то и на ней образуется столбчатый мезофилл. У многих листьев однодольных растений мезофилл не дифференцируется на столбчатый и губчатый, а состоит из одинаковых клеток. Встречаются уклонения от типичной плоской структуры листа и тогда клеточное строение тоже меняется. У некоторых растений-ксерофитов обе стороны листа имеют одинаковую эпидерму и мезофилл. У многих суккулентов листья цилиндрической формы с радиальной симметрией. У некоторых злаков имеется особенно высокоспециализированный тип мезофилла – корончатый. Здесь клетки мезофилла окружают проводящие пучки, примыкая к ним по радиусу. В промежутках между клетками имеются большие межклетники, против которых с обеих сторон имеются устьица.
Что такое испарение
Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.
Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.
Механизм транспирации
Зачем растению нужно испарять влагу? Транспирация позволяет растению получать из грунта питательные вещества и микроэлементы, растворенные в воде.
Механизм действия следующий:
- Освобождаясь от лишней влаги, в водопроводящих тканях растений создается отрицательное давление.
- Разряжение «подтягивает» влагу из соседних клеток ксилемы, и так, по цепочке, непосредственно до всасывающих клеток корневой системы.
Благодаря процессу испарения растения естественным образом регулируют свою температуру, защищая себя от перегрева. Доказано, что температура транспирирующего листа ниже не испаряющего влагу. Разница достигает 7°С.
У растений различают две разновидности влагообмена:
- посредством устьиц;
- через кутикулы.
Чтобы понять принцип действия данного явления необходимо вспомнить строение листа из школьного курса биологии.
Лист растения состоит из:
- Клеток эпидермиса, которые образуют основной защитный слой.
- Кутикула – восковой (внешний) защитный слой.
- Мезофилл или «мякоть» – основная ткань, расположенная между внешними слоями эпидермиса.
- Прожилки – «транспортные магистрали» листа, по которым перемещается влага насыщенная питательными веществами.
- Устья – отверстия в эпидермисе, контролирующие газообмен растения.
При устьичной транспирации, процесс испарения происходит в две стадии:
- Переход влаги из жидкой фазы в парообразную. Вода в жидком состоянии находится в клеточных оболочках. Пар формируется в межклеточном пространстве.
- Выделение газообразной влаги в атмосферу через устья эпидермиса.
Кутикулярная транспирация регулирует испарение влаги с поверхности листьев при закрытых устьях. Интенсивность испарения жидкости зависит от толщины кутикулы и возраста растения.
Определение уровня транспирации
Разработано много методик и приборов для определения уровня транспирации, например, лизиметры, термосинтетические сенсоры.
Практические опыты учёных показали, что вода, которую испаряют растения, по своему составу различается с впитываемой жидкостью.
Лист, за время сезона, испаряет воды несколько раз больше своего веса. Например, с одного гектара пшеницы испаряется за время выращивания до 3 000 тонн воды.
Специалисты сельского хозяйства используют в своей работе специальный термин – транспирационный коэффициент. Это отношение массы воды, которую затратили для полива к прибавлению сухой массы растения.
В стандартном выражении он равняется от 200 до 600 (в некоторых случаях 1 000) единиц. То есть для выращивания 1 кг с/х культуры нужно примерно 600 л воды.
В засушливых регионах у растений существуют специальные приспособления, которые помогают им уменьшить уровень транспирации. Например, это маленькая поверхность листвы или их видоизменение, водонепроницаемая плёнка кутикулы.
Часто растения применяют САМ — фотосинтез, когда поры листьев открыты только ночью при низкой температуре воздуха и высокой влажности.
Если объём воды, потребляемый растением, совпадает с её расходом, то водный баланс хорошо регулируется, развивается растение гармонично. Во время роста могут возникнуть различные ситуации нарушения водного баланса.
С короткими эпизодами растения справятся, но продолжительные перебои с водой способны привести к гибели.
Роль в жизни растений
Значение испарения в жизни растительности трудно переоценить, особенно учитывая, что живое растение на восемьдесят процентов состоит из воды. Поэтому если растению не хватает влаги, оно может погибнуть, так как вместе с водой в него не будут поступать также нужные для жизнедеятельности питательные вещества и микроэлементы.
А вот тут немаловажная роль отводится испарению, так как солнечные лучи имеют способность чрезвычайно сильно нагревать предметы, а потому способны вызвать гибель растения от перегрева (особенно в жаркие летние дни). Чтобы этого избежать, происходит испарение воды листьями, через которые в это время выделяется много жидкости (например, из кукурузы за сутки испаряется от одного до четырёх стаканов воды).
Это значит, что чем больше в организм растения поступит воды, тем испарение воды листьями будет интенсивнее, растение будет больше охлаждаться и нормально расти. Испарение воды растениями можно ощутить, если во время прогулки в знойный день прикоснуться к зелёным листьям: они обязательно окажутся прохладными.
Транспирация: виды
Испарение воды растениями проходит в три фазы:
- Продвижение из жилок в верхние слои мезофилла.
- Испарение из стенок клетки в межклеточные промежутки и пустоты вокруг устьиц; последующий выход наружу.
- Последний этап подразделяется на:
- транспирацию через устьица – устьютную;
- испарение в атмосферу непосредственно через клетки эпидермиса – кутикулярную транспирацию.
Устьютная
Ее можно разбить на две стадии.
- Переход воды из капельного состояния (в таком виде она пребывает в клеточных оболочках) в газообразное в межклеточных промежутках. В это время растение способно регулировать силу транспирации. Если воды ему не хватает, в корневых и стеблевых сосудах возникает сильное напряжение, задерживающее продвижение воды к клеткам листьев. И испарение замедляется.
- Выделение пара на поверхность через устьица. Как только водяной пар выходит из межклеточных пустот, они снова заполняются за счет перемещения из оболочек клеток. Основной рычаг координирования транспирации – это степень открытости устьиц.
Транспирация, которую биологи назвали кутикулярной, у разных видов растений очень отличается по своей интенсивности. У одних потеря влаги за ее счет совсем незначительна. Например, семействам магнолиевых и хвойных толстый эпидермис и кутикула поверх него на листьях не дают терять много жидкости. У других транспортируемая таким образом вода может составлять до 50 процентов общего объема. Особенно силен процесс, когда листья еще молоденькие, с очень тонким эпидермисом и кутикулой.
Кавитация
Чтобы поддерживать градиент давления, необходимый для того, чтобы растения оставались здоровыми, они должны постоянно поглощать воду своими корнями. Они должны быть в состоянии удовлетворить потребности в воде, потерянной из-за испарения. Если растение не может принести достаточно воды, чтобы оставаться в равновесии с транспирацией, происходит событие, известное как кавитация . Кавитация — это когда растение не может обеспечить свою ксилему достаточным количеством воды, поэтому вместо того, чтобы заполняться водой, ксилема начинает заполняться водяным паром. Эти частицы водяного пара собираются вместе и образуют засоры в ксилеме растения. Это не позволяет растению транспортировать воду по своей сосудистой системе. Нет очевидной картины того, где кавитация возникает по всей ксилеме растения. Если не принять эффективных мер по уходу, кавитация может привести к тому, что растение достигнет точки постоянного увядания и погибнет. Следовательно, у растения должен быть метод, с помощью которого можно удалить эту кавитационную закупорку, или он должен создать новое соединение сосудистой ткани по всему растению. Растение делает это, закрывая устьица на ночь, что останавливает поток транспирации. Это затем позволяет корням создавать давление более 0,05 МПа, и это способно разрушить закупорку и наполнять ксилему водой, повторно соединяя сосудистую систему. Если растение не может создать достаточное давление, чтобы устранить засорение, оно должно предотвратить распространение засора с помощью груши, а затем создать новую ксилему, которая может повторно соединить сосудистую систему растения.
Ученые начали использовать магнитно-резонансную томографию (МРТ) для неинвазивного мониторинга внутреннего состояния ксилемы во время транспирации. Этот метод визуализации позволяет ученым визуализировать движение воды по всему растению. Он также способен видеть, в какой фазе находится вода в ксилеме, что позволяет визуализировать события кавитации. Ученые смогли увидеть, что в течение 20 часов солнечного света более 10 сосудов ксилемы начали заполняться частицами газа, становящимися кавитацией. Технология МРТ также позволила увидеть процесс восстановления этих ксилемных структур на заводе. После трех часов нахождения в темноте было замечено, что сосудистая ткань пополнилась жидкой водой. Это стало возможным, потому что в темноте устьица растения закрыты и транспирация больше не происходит. Когда транспирация прекращается, кавитационные пузыри разрушаются давлением, создаваемым корнями. Эти наблюдения предполагают, что МРТ способны контролировать функциональное состояние ксилемы и позволяют ученым впервые просматривать события кавитации.